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Challenges

• Generalization Across Diverse Domains
• Dependency on Pretrained Models
• Quality of Pseudo Annotations
• How to align any off-the-shelf (现成的) pretrained vision 

encoder with text semantics, and with no human supervision.



Novelty

• A lightweight contrastive alignment module, built on 
foundation models like CLIP (for object detection) and SAM 
(for generating object masks)

• Generate semantic segmentation masks as pseudo 
annotation with zero pixel or image level labels. 



Angry!!!!!!!!!!!!!!!!!!!!

No open source code!!!



Method



Overview



Label Generation



Label Generation

• An image and a text encoder: CLIP to recognize categories 
present in the image.

• CLIP is trained to maximize the cosine similarity between the 
image class token and the text representation.

• Sliding window
• Vocabulary: all possible labels in a given dataset are considered 

as the vocabulary



Visual Features Alignment



Stage 1.1: Querying SAM with CLIP



Stage 1.2: SAM Masks classification

• Disadvantage of Stage 1.1: May ignore small objects or 
generate partial masks for an image



Stage 1.2: SAM Masks classification



Stage 1.2: SAM Masks classification

• Automatic mask generation
• Masks extracted from the full image using SAM’s automatic mask 

generation pipeline
• Constrain the masks by size and predicted IOU to filter out the low 

quality and duplicate masks
• Mask labelling: In order to classify each generated mask by 

SAM
• CLIP’s mean feature embedding corresponding to the area covered by 

the mask
• Its similarity to the text features of the detected categories in the image
• The class with the highest similarity is selected as the pseudo label for 

the corresponding mask.



Stage.2: Lightweight semantic 
segmentation
• Alignment Module: Map the image patch features to the text 

embedding
• Predicted masks along with their corresponding predicted categories 

as pseudo labels.
• Apply DINOv2, a recent model trained in a fully self-supervised fashion 

with no text alignment.
• To overcome the noisy: pseudo annotations 

• frozen pretrained text features as anchors
• already discriminative image patches features
• a loss function that is robust to noise



Stage.2: Lightweight semantic 
segmentation
• Pseudo label generation: …
• Training the alignment module: New Robust loss function 

SupCon



Test-Time Inference



Experiment



Patch-level alignment between image and class



Qualitative results of zero-shot segmentation



Semantic Segmentation performance on various 
datasets



Choice of Architecture (Alignment)



Conclusion



Conclusion

• Foundational models compositionality.
• Alignment module can improve VLM models that are based on 

CLIP to further strengthen their object localization capabilities.
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