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Shor Recap for NeRF



Overview



Key Points
• An Overfitting Neural Network (Singular) 
• Volume rendering that is backpropagated.
• Sparse voxel representation of a 3D scene
• Learns mapping from 3D voxel position and camera direction to 

the color & opacity of voxels.



Drawbacks

• Significant cost of sampling & result in noise
• Lots of uninformative data: storing points for an empty space
• Marching Step limitations: detail quality
• Inefficient volume rendering: difficult  to back-propagate.



Background



Challenges

• Costly to train and render neural networks achieving high visual 
quality.

• Or low speed.
• Real time rendering

• Unbounded and complete scenes (rather than isolated objects)
• 1080p, ≥ 30 fps.



Advocation

• 3D Gaussians representation method
• Fast visibility-aware rendering algorithm



Method



Solution

1. anisotropic 3D Gaussians – High-quality, unstructured 
representation of radiance fields

2. An optimization method of 3D Gaussian properties, interleaved 
with adaptive density control that creates high-quality 
representations for captured scenes.

3. A fast, differentiable rendering approach for the GPU, which is 
visibility-aware, allows anisotropic splatting and fast back-
propagation to achieve high-quality novel view synthesis.



Overview



Overview

1. Step1: sparse SfM point cloud + Create a set of 3D Gaussians
• Position (mean value)
• Covariance matrix
• Opacity 𝛼𝛼

2. Step2: Create the radiance field representation via a sequence of 
optimization steps of 3D Gaussian parameters, interleaved with 
operations for adaptive control of the Gaussian density



3D Gaussians: Initialization



Method: Differentiable 3D Gaussian Splatting

• 3D Gaussians are defined by a full 3D covariance matrix Σ defined 
in world space centered at point (mean) 𝜇𝜇 :

𝐺𝐺 𝑥𝑥 = 𝑒𝑒−1
2 𝑥𝑥−𝜇𝜇 𝑇𝑇 Σ−1 𝑥𝑥 −𝜇𝜇

• The relative density of that point in a Gaussian distribution, which 
is the probability of finding a data point at that point.



3D Gaussians: Projection



Method: Differentiable 3D Gaussian Splatting

• Project 3D Gaussians to 2D for rendering: Given a viewing 
transformation 𝑊𝑊 the covariance matrix Σ′ in camera coordinates 
is given as follows:

Σ′ = 𝐽𝐽𝑊𝑊Σ𝑊𝑊𝑇𝑇𝐽𝐽𝑇𝑇

• where 𝐽𝐽 is the Jacobian of the affine approximation of the 
projective transformation.

• Challenge: Covariance matrices have physical meaning only if they 
are semi-definite. ⇔ ∀𝑣𝑣 ≠ 𝟎𝟎, 𝑠𝑠. 𝑡𝑡. 𝑣𝑣𝑇𝑇Σ𝑣𝑣 ≥ 0



Method: Differentiable 3D Gaussian Splatting



Method: Differentiable 3D Gaussian Splatting

• 3D Gaussian is analogous to describing the configuration of an ellipsoid
• Given a scaling matrix 𝑆𝑆 and rotation matrix 𝑅𝑅, we can find the 

corresponding Σ:
Σ = 𝑅𝑅𝑆𝑆𝑆𝑆𝑇𝑇𝑅𝑅𝑇𝑇

• Hint: 𝑆𝑆 is a diagonal matrix whose diagonal element is provided by 3D 
vector 𝑠𝑠 → Semi-definite.

• 𝑅𝑅 is represented by quaternion 𝑞𝑞 , describing  the rotation between the 
main axis of a three-dimensional Gaussian distribution and the 
standard coordinate axis, which is ⊥



3D Gaussians: Projection



Method: Differentiable Tile Rasterizer
1. Collect splats that are visible (confidence ≥ 99%) 

through view frustrum.

2. Project splats and split the screen into 16 ×
16 tiles

3. Associate splats with tiles by tile-ID and sort them 
using a single fast GPU Radix sort. Stop when all 
pixels have sutured (i.e. 𝑎𝑎 → 1) 

4. Process all pixels in a tile perform 𝑎𝑎-blending, by 
traversing ordered list of splats.
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3D Gaussians: Adaptive Density Control



Method: Adaptive Density Control

• Sparse points from Structure from Motion (SfM).
• The need for adaptive control to achieve a denser and more 

accurate representation.



Method: Adaptive Density Control

• Regions with missing geometric 
features

• Under-Reconstruction: when 
small-scale geometry (black 
outline) is insufficiently covered, 
they clone the respective 
Gaussian

• Over-Reconstruction: if small-
scale geometry is represented by 
one large splat, they split it in 
two. 



Method: Adaptive Density Control

• Targeting Gaussians in areas with large view-space positional 
gradients, indicating regions needing better reconstruction.

• Criteria for Densification: Gaussians with an average magnitude of 
view-space position gradients above a threshold 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝 = 2 × 10−4

are candidates for densification.



Method: Adaptive Density Control

• Other Tricks:
• Densifying every 100 iterations and remove any Gaussians that are 

essentially transparent. (with 𝛼𝛼 threshold)
• Removing Gaussians that are very large in worldspace and those that have 

a big footprint in viewspace



Flow overview

• The loss function is L1 
combined with a D-SSIM term 
(𝜆𝜆 = 0.2 was used)

• 3D Gaussian parameters:
• Mean 𝜇𝜇 ∈ ℝ3×1

• full 3D covariance matrix 
Σ ∈ ℝ3×3

• Scaling 𝑠𝑠 ∈ ℝ3×1

• Quaternion 𝑞𝑞 ∈ ℝ4×1

• Spherical harmonics
(color) 𝑆𝑆𝑆𝑆 ∈ ℝ3×9

• Opacity 𝛼𝛼 ∈ ℝ1

Optimizes



Experiments



Implementation Details

• custom CUDA kernels for rasterization
• NVIDIA CUB sorting routines for the fast Radix sort
• an A6000 GPU



Quantitative evaluation

More memory used!!! 



Ablation study



Ablation study

• Above: Initialization with a 
random point cloud.

• Below: Initialization using 
SfM points.



Ablation study

• No Split

• No Clone

• Full



Ablation study



Ablation study
• Full covariance matrix → anisotropy (directional variance)
• Comparing a version that only uses a single scalar to control the radius 

uniformly across all three axes (removing anisotropy) with the full 
model



Limitations



Limitations
• Artifacts in regions not well observed, common to other methods as 

well.
（观察不足的区域的伪影）
• Creation of elongated artifacts or "splotchy" Gaussians in some cases.
（各向异性高斯的伪影）
• Occasional popping artifacts when large Gaussians are created, 

especially in areas with view-dependent appearance.
（弹出伪影）
• Simple visibility algorithm leading to sudden changes in 

depth/blending order of Gaussians.
（简单的可见性算法）



Limitations
• No application of regularization in the optimization process, which 

could mitigate unseen region and popping artifacts.
（未应用正则化技术）
• Significant memory consumption compared to NeRF-based 

solutions, with peak GPU memory usage exceeding 20 GB during 
training of large scenes in the unoptimized prototype.

（内存消耗）
• Need for hyperparameter adjustment for large scene convergence, 

as observed in early experiments.
（减少内存消耗的机会）



Conclusion



Conclusions

• 3D Gaussians is a excellent method for scene representation due to: 
• A differentiable volumetric representation
• Can be easily projected to 2D splats
• Allowing fast 𝛼𝛼-blending for rendering

• Utilizing Gaussians for a scene representation allows to avoid 
unnecessary computation in empty space and achieve an accurate 
representation of the scene.

• The differentiable tile rasterization approach implemented as 
optimized CUDA kernels is a key factor for the performance of 
both training and real-time rendering.



Conclusions

• It has a higher memory cost compared to other approaches.
• This is the first approach that truly allows both real-time and high-

quality rendering, while requiring training times competitive with 
the fastest existing solutions.



Q&A
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