## Definition We define the **error** as: $$E = V_t - V_a$$ where $V_t$ is the ground truth value and $V_a$ is our approximation value The definition of **Relative error**, which is normalized error of $E$ by $V_t$: $$E_r = \frac{E}{V_t}$$ If $\epsilon$ is an approximation for the error, then the relative approximate error $\epsilon_r$ is defined as: $\epsilon_r = \frac{\epsilon}{V_a}$ ### Example > If we use $\frac{22}{7}$ as an approximation of $\pi$ $E = \pi - \frac{22}{7}$ $E_r = \frac{E}{\pi} \approx -0.04\%$ $\epsilon_r = \frac{\pi - \frac{22}{7}}{\frac{22}{7}} \approx -0.04\%$ Loading... ## Definition We define the **error** as: $$E = V_t - V_a$$ where $V_t$ is the ground truth value and $V_a$ is our approximation value The definition of **Relative error**, which is normalized error of $E$ by $V_t$: $$E_r = \frac{E}{V_t}$$ If $\epsilon$ is an approximation for the error, then the relative approximate error $\epsilon_r$ is defined as: $\epsilon_r = \frac{\epsilon}{V_a}$ ### Example > If we use $\frac{22}{7}$ as an approximation of $\pi$ $E = \pi - \frac{22}{7}$ $E_r = \frac{E}{\pi} \approx -0.04\%$ $\epsilon_r = \frac{\pi - \frac{22}{7}}{\frac{22}{7}} \approx -0.04\%$ 最后修改:2025 年 03 月 17 日 © 允许规范转载 打赏 赞赏作者 支付宝微信 赞 如果觉得我的文章对你有用,请随意赞赏